I- I- Rl
\ Monthly Research

Building Secure Linux Application
With Privilege Separation

FFRI, INnc
http://www.ffri.jp

Ver 1.00.02




FFRI
\

Background

e Privilege separation is a key technology to achieve “Principle of
least privilege”

e In secure programming:
— Privilege separated application limits an impact of a vulnerability
— Real world application
e tcpdump, vsftpd, OpenSSH, Google Chrome




FFRI
\

Privilege Separation

o A design of secure application architecture
— Dividing execution units and minimizing privilege each process

— Attacker obtains only few privileges even if the exploit is
successful

e Merit of privilege separated server application
— Strong user isolation in multi-user service
— Limited intruder hostile action on internet services

e Merit of privilege separated client application

— Secure execution environments for untrusted remote script
like javascript
e e.g. Web browser needs a lot of privileges while running
untrusted remote script




FFR{
Key Technology

e Process dividing
— Dividing a process into some processes

e Process sandboxing
— Granting least privilege to each process

e Inter-process communication(IPC)
— For inter-communication between divided processes
— In Linux: Pipe, POSIX Shared memory, Unix domain socket:--




FFR{
Process Dividing

e To separate between privilege required processing(like process
management) and sensitive processing

— Divided processes communicate using IPC

Master Process

Privilege required processing

Privilege required processing Communication with

" . pipes, shared memory, unix domain socket...
Sensitive processing

Ambient authority:

_ Worker process
the process may read, write, fork...

Sensitive processing




FFR{
Example: OpenSSH

e OpenSSH daemon spawns privileged worker process per session

— Authentication processing and authenticated user processing
execute in the non-privilege process

The master
Daemon Process Drocess
Spawn
each connection
Privileged Monitor Privileged Monitor Worker
| Process Process processes

Spawn with \
specific processing

User Owned sshd Process

Pre-authenticate Process Sandboxed
(user privilege)

(no-privilege) processes

Authorized client Unauthorized client




FFRI
\

Sandboxing on Linux

e Access Control based sandboxing
— Using Discretionary Access Control(DAC)
e UID, Permissions
— Using Mandatory Accesss Control(MAC)
e SELinux, AppArmor
— Using Namespace
e Chroot

e (Capability based sandboxing
— Linux kernel capabilities (based on POSIX Capability)
— Linux secure computing mode
e State-of-the-art of sandboxing on Linux




FFRI
\

Linux Secure Computing Mode(seccomp)

Secure computing mode process renounces execution privileges
of system calls

— Developer has to concern themselves about “least privilege”
design

Seccomp Mode 1 (Available since Linux 2.6.12~)
- Mode 1 permits only read(), write(), exit(), sigreturn()

Seccomp Mode 2 (Available since Linux 3.5~)
— Mode 2 can configures permit/denied system calls




FFRI
Seccomp Mode 2(a.k.a. Seccomp-bpf)

e Seccomp Mode 2 filtered out violated system calls at system
call execution

— Kernel calls bpf(Berkeley packet filter) backend with
translated bpf filter program

— Seccomp Mode 2 configuration forces developer to describe
bpf-program

read() User space

Kernel space

__NR_read Return error

if filtered out by bpf

struct seccomp_data sd {
.nr =0x63;// __NR_Read
.arch = 0x40000003; //i386

BPF_STMT(BPF_LD+BPF_W+BPF_ABS, arch_nr),
Bl BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ARCH_NR, 1, 0)
Bpf prog ram BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

}...

Execute allowed system
call only



FFR{
Case study
e tcpdump

— Reducing own privilege
e the process not divided

o vsftpd
— Restricted accounts in multi-user services

e Google Chrome
— Running script engine with untrusted code




FFRI
tcpdump o

e tcpdump dropped own privileges before actual packet filtering

e Sandboxing is achieved due to change own user from
privileged to non-privileged user

Initializing

Capturing & filtering
(sandboxed)




FFRI
vsftpd o

e Remote user restricted action with own privilege

— If user needs privilege action, child process calls privileged
process's function

— Reinforcing sandbox with Seccomp Mode 2 since version
3.0.0

Vsftpd Daemon

Requesting privileged

Fork() operations
per session - Login
(CTTTIL ST \ - Chown()

! Child process
i (unprivileged)

1
: - New socket
1

Dropping almost capabilities
and restricting system calls



I oo
\

Google Chrome

e Renderer separates main process and its sandboxing
— Because renderer executes untrusted remote script

Browser Process

Task Manager - Google Chrome

A -Task Private Memory CPU Network Process ID FPS
& Browser 42,768K 2 0 8139 MJA
Tab: Chrome 28,724K 0 0 8288 0
Renderer PrOCGSS | Tab: Sandbox Status 19,224K 0 0 8413 0
(SandbOxed) | | Tab: chrome:ffgpu 22,944K 0 0 8431 12
# GPU Process 8,616k 0 A 2442 A
# Extension; GaiaAuthExtension 20,144K 0 0 8483 INfA
|PC B b ## R v FLALOEF YT 53,764K 5
Plug-in: Shockwave Flash 22,464K 5

Renderer Process
(sandboxed) _ B

Stats for nerds Close End Process

GPU Process
(sandboxed)




I oo
\

Suitable a part of program
for privilege separation

e Parser with untrusted data
- e.g. Packet filtering
e Interpreter with untrusted code
— e.g. javascript engine
e Authentication processing on multi-user service




FFRI
\

concerns

e Increase complexity of source code by process dividing
e Decrease portability by sandboxing

— A number of privilege separation related component
depends on OS environment

e Process management, DAC/MAC, capabilities, IPCs..
e Deteriorate memory space effectiveness

— Divided processes consume memory larger than a
single process application




FFRI
Conclusion

e Privilege separation limits incursion into your application
e Show key technology of privilege separation as follows:
— Process dividing
— Process sandboxing
— Inter-process communications

e Seccomp Mode 2 is state-of-the-art of Linux sandboxing

e Some security-critical open source software has been armed
process diving and sandboxing

e Privilege separation increases security, but a development cost
Increase again



FFRI
\

References

e Syscall Filters
https://fedoraproject.org/wiki/Features/Syscall Filters

e The Chromium Projects: Design documents
http://dev.chromium.org/developers/design-documents/

e Using simple seccomp filters
http://outflux.net/teach-seccomp/

o Vsftpd
https://security.appspot.com/vsftpd.html
e (OpenSSH

http://www.openssh.com/

e Preventing Privilege Escalation[Niels Provos et al, USENIX Security 2003]
http://niels.xtdnet.nl/papers/privsep.pdf

e (Capsicum[Robert R.M.W et al, USENIX Security 2010]
http://static.usenix.org/event/secl10/tech/full papers/Watson.pdf



https://fedoraproject.org/wiki/Features/Syscall_Filters
http://dev.chromium.org/developers/design-documents/
http://outflux.net/teach-seccomp/
https://security.appspot.com/vsftpd.html
http://www.openssh.com/
http://niels.xtdnet.nl/papers/privsep.pdf
http://static.usenix.org/event/sec10/tech/full_papers/Watson.pdf

FFRI
\

Contact Information

E-Mail : research—feedback@ffri.jp

Twitter: @FFRI Research



mailto:research—feedback@ffri.jp
https://twitter.com/FFRI_Research

